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The roles that astrocytes play in the evolution of abnormal network excitability in chronic neurological disor-
ders involving brain injury, such as acquired epilepsy, are receiving renewed attention due to improved
understanding of the molecular events underpinning the physiological functions of astrocytes. In epileptic
tissue, evidence is pointing to enhanced chemical signaling and disrupted linkage between water and potas-
sium balance by reactive astrocytes, which together conspire to enhance local synchrony in hippocampal
microcircuits. Reactive astrocytes in epileptic tissue both promote and oppose seizure development through
a variety of specific mechanisms; the new findings suggest several novel astrocyte-related targets for drug
development.
Introduction
The first thing you have to consider is that these are not your

father’s astrocytes, those flaccid cells that lay at the bottom of

the dish, unable even to generate a spike. Today, astrocytes

are recognized as more than simple bit players on the brain’s

stage. For example, in the healthy brain, thrombospondins and

other proteins secreted by immature astrocytes control synapto-

genesis (Christopherson et al., 2005), and individual astrocytes

cradle and shepherd newborn dentate granule cells to their final

destinations (Shapiro et al., 2005).

Whether astrocytes play a role in information processing nor-

mally or in certain pathological conditions such as epilepsy is an

intriguing notion receiving increased attention. Epilepsy—a fam-

ily of neurological disorders characterized by the unpredictable

but recurrent occurrence of seizures—is one of the most com-

mon disorders of the brain. Approximately 3% of us who live to

the age of 80 will have developed epilepsy. Epileptic seizures

are uncontrolled sudden attacks of a convulsive or nonconvul-

sive nature associated with unusually intense neuronal firing.

Neuronal firing patterns during a seizure typically include periods

of asynchronous activity and periods of synchronous bursts. A

spatially restricted seizure focus in the brain can often be identi-

fied for epilepsies acquired after head trauma, tumors, or other

severe focal insults to the brain. Other epilepsies by contrast typ-

ically involve seizures that spread throughout the brain so rapidly

that the focus cannot be localized. The epileptic brain exists in

two functional states: the ictal state during a seizure and the lon-

ger interictal state between seizures. The interictal, or ‘‘epilepti-

form,’’ burst consists of a brief (50–200 ms) neuronal discharge

that is synchronous over several millimeters of tissue. Develop-

ment of an epileptic seizure requires physiological changes

that lead to both heightened neuronal excitability and abnormal

synchronization of discharge within the affected neuronal net-

work. The evident part that astrocytes play in this neurocentric

disorder is the subject of growing interest.

The functions of astrocytes in the healthy adult brain are tradi-

tionally considered to involve potassium buffering, interstitial vol-

ume control, and maintenance of a low interstitial glutamate con-

centration. Astrocytic processes present sheet-like extensions

that enwrap neurons and blood vessels in the brain. Accumulat-
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ing evidence points to functional heterogeneity within the astro-

cyte population of the healthy adult brain (Ridet et al., 1997;

Walz, 2000; Seifert et al., 2006). Reactive gliosis, a component

of neuroinflammation that involves structural and metabolic

changes in astrocytes and microglia, is often a prominent feature

of mesial temporal lobe human epilepsy and most animal models

of recurrent seizures. Three major questions related to the poten-

tial roles of reactive astrocytes in either seizure generation or

epileptogenesis are receiving much attention: Has astrocyte-

neuron glutamate signaling gone awry? Is water or potassium

balance impaired? And, does reactive gliosis cause, exacerbate,

or combat seizures? We will consider these issues and the evi-

dence for each in turn. A better understanding of the pro- and an-

ticonvulsant actions of reactive astrocytes could lead to novel

strategies for epilepsy. Several recent reviews complement the

discussion that follows (Amiry-Moghaddam and Ottersen,

2003; Kofuji and Newman, 2004; Volterra and Meldolesi, 2005;

Seifert et al., 2006; Halassa et al., 2007).

Excessive Astrocyte-Neuron Chemical Signaling
One of the most captivating changes in our view of astrocyte

functions is the gradual acceptance of the notion that astrocytes

can respond to neurotransmitters, hormones, and other stimuli

via increases in intracellular Ca2+, which in turn can promote

release of chemical mediators, including D-serine, ATP, and glu-

tamate (reviewed in Haydon and Carmignoto, 2006). The major

issues driving this field today are (1) exploring the cellular path-

ways that regulate this stimulus-release process, (2) identifying

the conditions under which it occurs, and (3) determining

whether and when such ‘‘gliotransmission’’ influences the excit-

ability of nearby neurons. A most intriguing question is whether

exuberant neuron-astrocyte-neuron transmitter-mediated sig-

naling promotes abnormal neuronal synchronization in epilepsy.

Glutamate Release from Astrocytes

Glutamate release from pure astrocyte cultures was demon-

strated by HPLC or enzymatic assays following treatment with

agonists of Gq-coupled GPCRs (Parpura et al., 1994; Jeftinija

et al., 1997; Bezzi et al., 1998). When glutamate is released

from astrocytes, what is the route? Several routes appear to

operate, including reverse transport (Rossi et al., 2000),
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cystine-glutamate xc- antiporter (Cavelier and Attwell, 2005),

volume-sensitive anion channels (Mongin and Kimelberg,

2005; Abdullaev et al., 2006; Liu et al., 2006; Ramos-Mandujano

et al., 2007), gap junction hemichannels (Ye et al., 2003), and

vesicular exocytosis (Jeftinija et al., 1997; Bezzi et al., 2004;

Bowser and Khakh, 2007; Xu et al., 2007). For example, Ra-

mos-Mandujano et al. (2007) showed that hypo-osmotic medium

caused glutamate release from astrocytes in culture, a process

that was prevented by several volume-sensitive anion channel

blockers. They concluded that cell swelling such as occurs dur-

ing ischemia or seizures can cause astrocytic glutamate release.

Of the various routes for astrocytic glutamate release, perhaps

the most complete evidence is for Ca2+-dependent exocytosis of

vesicular glutamate from astrocytes. The evidence consists of

three parts. First, astrocytes, like many other non-neuronal cells

(Rothman, 2002; Bonifacino and Glick, 2004), express proteins

that mediate fusion of vesicles with cellular membranes (Bezzi

et al., 2004; Montana et al., 2006). These include the SNARE pro-

teins cellubrevin and synaptobrevin 2, the vesicular glutamate

transporters VGLUT1/2, and synaptotagmin IV, homologs of

which are required for Ca2+-mediated vesicle fusion in neurons.

These vesicle release proteins are, however, typically expressed

at much lower levels than their homologs in neurons. Second,

glutamate release from cultured astrocytes in response to me-

chanical stimulation could be prevented by omission of Ca2+ in

the medium or by selective proteolysis of SNARE proteins by

intracellular infusion of botulinum toxin (Araque et al., 2000).

Finally, burst-like release from DHPG-treated astrocytes of acri-

dine orange that had been concentrated within VGLUT-EGFP-la-

beled vesicles was revealed by the appearance of fluorescent

flashes, consistent with exocytotic release of vesicle contents

(Bezzi et al., 2004).

Modulation of Neuronal Excitability via Astrocytic

Release of Glutamate

Numerous studies have appeared reporting that astrocytic Ca2+

waves induce local glutamate release that acts on nearby neu-

rons to produce depolarization or neuronal Ca2+ transients (Pasti

et al., 1997; Parri et al., 2001; Angulo et al., 2004; Fellin et al.,

2004; Fiacco and McCarthy, 2004). The experimental design

has been progressively improved to rule out neuronal sources

of glutamate, and two recent studies now provide compelling

evidence that astrocytic glutamate release can influence the

strength of synaptic transmission at nearby synapses. Jourdain

et al. (2007) showed that strong repetitive depolarization of an

astrocyte by current pulses through a patch pipette increases

the frequency of spontaneous AMPA receptor-mediated minia-

ture EPSCs (mEPSC) recorded in nearby dentate granule cells.

Importantly, this effect was not seen following pulses delivered

extracellularly to the neuropil and was insensitive to tetrodotoxin,

but was prevented by direct astrocytic infusion of the active light

chain of the tetanus toxin protease (TeNTLC), which had been

shown previously to prevent exocytosis by destroying a compo-

nent of the SNARE complex, and by NMDA receptor blockade.

These and other supporting results suggest that Ca2+-evoked

glutamate release from a strongly depolarized astrocyte acts

on presynaptic NMDA receptors to increase the probability

of transmitter release. They went on to show a role for the Gq-

coupled P2Y1 receptor, which is robustly expressed by dentate
astrocytes. Their key experiment was to demonstrate that intro-

duction of the Ca2+ chelator BAPTA into astrocyte cytoplasm

was sufficient to abolish the P2Y1 receptor-mediated increase

in mEPSC frequency in nearby neurons. Repetitive stimulation

of the perforant path elicited Ca2+ signals in molecular layer as-

trocytes that could be reduced in amplitude by antagonists of

both metabotropic glutamate or P2Y1 receptors. Altogether,

this study builds a strong case for dentate gyrus astrocytes re-

sponding to intense perforant path activation by releasing a sub-

stance that activates NMDA receptors on presynaptic perforant

path terminals, which in turn potentiates synaptic transmission

by increasing the probability of transmitter release (Figure 1).

The second study by Perea and Araque (2007) showed that an

astrocytic Ca2+ transient induced by photostimulation of astro-

cytes loaded with caged Ca2+ was associated with increased

EPSC amplitude in nearby CA1 pyramidal cell synapses, which

was in turn caused by increased probability of transmitter release

rather than a postsynaptic modulation. Important controls con-

firmed that light flashes did not modify synaptic transmission if

(1) the pipette used to deliver the caged Ca2+ was placed in the

neuropil rather than an astrocyte, (2) the cage was omitted, or (3)

the deliverypipette alsocontained the light chain of TeNT. Interest-

ingly, although the astrocytic Ca2+ surge was virtually immediate

after photostimulation, synaptic efficacy rose gradually over about

10 min.The intervening steps within the latentperiod are unknown.

In both studies discussed above, intense astrocytic Ca2+ ele-

vations were followed by increased local presynaptic transmitter

release, but only in about one-third of tested synapses. Fiacco

et al. (2007) took a different approach to restrict Ca2+ transients

to astrocytes. They created a transgenic mouse that expresses

a foreign (non-brain) Gq-coupled receptor (MrgA1) selectively

in astrocytes. Activation of the MrgA1 receptor by the FLRFa

peptide elicited robust Ca2+ signals in most (80%–90%) astro-

cytes in hippocampal slices, but these Ca2+ transients restricted

Figure 1. Integrated Control of Synaptic Release Probability by
Astrocytes in Dentate Molecular Layer
Immunoelectron microscopy suggests the existence of NR2B-containing
NMDA receptors on perforant path terminals opposing astrocytic membranes
that contain vesicles close to the astrocytic plasma membrane (Jourdain et al.,
2007). Cell-derived ATP and glutamate act on two astrocytic Gq-coupled
GPCRs, mGluR5 and P2Y1R, to increase [Ca2+]i and promote astrocytic
release of glutamate into the extrasynaptic space. The resulting activation of
presynaptic NMDA receptors appears to contribute to frequency facilitation
at perforant path synapses.
Neuron 58, April 24, 2008 ª2008 Elsevier Inc. 169
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to astrocytes were not associated with measurable changes in

mEPSC amplitude or frequency in nearby CA1 pyramidal cells

(13 neurons from 13 slices were studied). Although no effects

were observed on spontaneous synaptic currents, to under-

stand the potential role of astrocytic Ca2+ signaling in epilepsy,

it will be important to explore synaptic plasticity in MgrA1 mice.

Fiacco et al. (2007) concluded from this study that Ca2+ eleva-

tion, per se, is not a sufficient stimulus for astrocytic glutamate

release.

Given these disparate findings, one wonders whether an un-

identified variable determines whether an astrocytic Ca2+ tran-

sient will influence local synaptic transmission. For example,

Ca2+ elevation might act in concert with other signaling pathways

(e.g., MAPK pathways) to trigger glutamate release but might not

be sufficient by itself. Whereas P2Y1 and mGluR5 receptors are

known to engage multiple signaling pathways (Peavy et al., 2002;

Fam et al., 2003; Neary et al., 2003; Edling et al., 2007), to date,

MrgA1 is only known to signal via Gq/11 (Han et al., 2002). In

sum, it is clear that Ca2+-dependent glutamate release from

astrocytes can, under certain conditions, influence the strength

of nearby excitatory synapses in the hippocampus. This exciting

development begs the next question.

Does Astrocytic Glutamate Release Synchronize

Neuronal Activity?

Astrocytic glutamate release can thus enhance nearby excit-

atory synaptic transmission, but the specific role of this process

in epilepsy has not been defined. It was recently proposed that

slow inward currents (SICs) recorded in hippocampal neurons

are caused by astrocytic glutamate release (Angulo et al.,

2004; Fellin et al., 2004; Tian et al., 2005) and, moreover, that

SICs represent the ‘‘paroxysmal depolarizing shift’’ (PDS) under-

lying an interictal burst (Tian et al., 2005). Indeed, many of the

in vitro hippocampal models of synchronous epileptiform burst-

ing or electrographic seizures that have been studied for de-

cades are associated with the appearance of SICs in hippocam-

pal pyramidal neurons (Tian et al., 2005). Although the SIC itself

has a similar time course as the PDS, it almost certainly reflects

an entirely distinct event. That is, the hallmarks of SICs are (1)

resistance to TTX, (2) sensitivity to blockade of NMDA receptors,

and (3) synchrony over short distances (<100 mm). By contrast,

PDS differ from SICs in being (1) blocked by TTX, (2) truncated

but not eliminated by NMDA receptor blockers, and (3) synchro-

nous over many millimeters of brain tissue (Korn et al., 1987;

Fellin et al., 2006). With respect to the sensitivity to NMDA recep-

tor blockers in particular, PDS, interictal-like burst firing, and

more prolonged seizure-like events can be produced by a large

number of conditions, which are variably sensitive to NMDAR

blockers. For example, D-APV truncates but does not suppress

PDS caused by GABAA receptor blockade (Dingledine et al.,

1986), whereas PDS in low Ca2+ are insensitive to D-APV (Heine-

mann et al., 1985). Taken together, these findings support the

conclusion that the PDS and SIC are distinct events.

Although astrocyte-induced SICs in nearby pyramidal neurons

are not epileptiform bursts per se, they represent a very interest-

ing, newly recognized synchronizing mechanism that appears to

be particularly prominent in juveniles. Using paired field poten-

tials or cellular Ca2+ recordings, three groups (Angulo et al.,

2004; Fellin et al., 2004; Tian et al., 2005) showed that SICs are
170 Neuron 58, April 24, 2008 ª2008 Elsevier Inc.
synchronous only over short distances of �100 mm. This is

a key finding and recalls the observation that individual astro-

cytes have spatial exclusivity over�60 mm, within which other as-

trocytes are virtually excluded (Bushong et al., 2002). The sphere

of influence of a modest cluster of two to three astrocytes is even

smaller than that of microcircuits (Grillner et al., 2005) but seems

well suited to mediate highly local neuron synchrony. Ca2+ un-

caging in a single astrocyte can be followed by SICs in nearby

neurons with a latency as low as 400 ms (Tian et al., 2005), al-

though more characteristically the latency is several seconds.

Given their long and variable latency, SICs seem better suited

to elevating the general excitability of a local neuron population

rather than being a component of widespread synchronous firing.

SICs were proposed to be caused by astrocytic release of glu-

tamate (Angulo et al., 2004; Fellin et al., 2004; Tian et al., 2005).

Albeit a remote possibility, neuronal alternatives to an astrocytic

source of glutamate, such as release of glutamate from nonsy-

naptic (dendrites or soma) sites (cf. Zaidi and Matthews, 1999)

or release from injured neurons, have not been entirely ruled

out experimentally. Hippocampal slices often require some

type of conditioning before SICs appear, for example multiple

stimulus trains (Fellin et al., 2004), multiple puffs of glutamate

(Xu et al., 2007), or prolonged exposure to DHPG or altered ionic

conditions. Such conditioning treatments invariably induce as-

trocyte swelling, and the possibility that swelling or the conse-

quent shrinkage in extracellular space is a prerequisite for SICs

must be considered. Hippocampal slices are typically incubated

in a holding chamber for approximately an hour before use. This

might be long enough to initiate reactive gliosis in response to in-

jury during the cutting process. Astrocyte swelling elicits a ho-

meostatic volume-control mechanism that involves the release

of glutamate, chloride, and other anions through volume-sensi-

tive organic anion channels (Anderson and Swanson, 2000).

This process might contribute to the variability in observation

of SICs in different laboratories (cf. Fiacco et al., 2007). Indeed,

Fiacco et al. (2007) reported that hypo-osmotic medium reliably

elicited SICs, even in mice that lacked the IP3R2 receptor, which

is required for intracellular Ca2+ release in astrocytes. Bafilomy-

cin, which blocks vesicular transmitter release in neurons, did

not prevent SICs in the IP3R2 knockout mice. Collectively, these

results demonstrate that SICs can be produced in pathologic

conditions involving cell swelling and do not necessarily require

vesicular neurotransmitter release from neurons or IP3 receptor-

dependent Ca2+ elevation in astrocytes.

In slices bathed in Mg-free, picrotoxin-containing ACSF, SICs

were observed many seconds after an LTP-like stimulus train de-

livered to the Schaffer collateral input or after perfusion of hippo-

campal slices with the group I mGluR agonist DHPG (Angulo

et al., 2004; Fellin et al., 2004). DHPG-evoked SICs were reduced

in amplitude by the NR2B-selective NMDA receptor antagonist

ifenprodil and were resistant to tetrodotoxin and to a tetanus

toxin fragment that blocks excitatory synaptic transmission. A

similar phenomenon, which is TTX resistant and variably blocked

by NMDA receptor antagonists, can be triggered in CA1 pyrami-

dal cells by the broad-spectrum potassium channel blocker

4-aminopyridine, by medium lacking Mg2+, by the GABA recep-

tor blockers penicillin and bicuculline, and by Ca2+-free medium

(Tian et al., 2005).
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To summarize, the basic finding is that a substance, presum-

ably glutamate, aspartate, or D-serine, via an action potential-in-

dependent process, can be released from astrocytes in sufficient

quantities to elicit NMDA receptor-mediated short-range syn-

chronous depolarizations of CA1 pyramidal neurons. The role

of SICs in epilepsy is uncertain, although the most intriguing fea-

ture of this astrocyte-driven phenomenon is the induction of

highly local, microsynchronous firing among populations of two

to four adjacent neurons. Thus, whereas SICs do not themselves

represent interictal bursts for reasons discussed above, they are

well poised to produce the ‘‘grandfather neuron,’’ which initiates

such bursts in epileptic tissue that is already prone to excitability.

Glial Glutamate Transporters in Epilepsy
Five subtypes of glutamate transporter have been cloned:

EAAT1 (known as GLAST in rodents), EAAT2 (GLT-1 in rodents),

EAAT3 (or EAAC-1), EAAT4, and EAAT5. Two glial-specific trans-

porters are expressed in astrocytes, EAAT1/GLAST and EAAT2/

GLT-1, which are largely responsible for glutamate clearance

from the extracellular space (Rothstein et al., 1994; Lehre

et al., 1995). The glial transporters appear to account for the

majority of glutamate uptake in the brain, as judged by studies

employing mice with genetic deletion (Tanaka et al., 1997) or

antisense oligonucleotide-mediated inhibition (Rothstein et al.,

1996) of GLT-1. Glutamate clearance by transporters undoubt-

edly plays a critical role in limiting extrasynaptic glutamate

receptor activation.

Several experiments in knockout mice suggest that impaired

glutamate uptake by astrocytes has the potential to contribute

to the development of seizures. Mice with genetic deletions of

the astroglial transporter GLT-1/EAAT2 develop spontaneous

seizures, which suggests that GLT-1 is critical for normal gluta-

matergic transmission in the CNS (Tanaka et al., 1997). Yet,

the same study showed that the knockdown of GLT-1 with anti-

sense oligonucleotides does not result in the development of

seizures. Additional experiments with conditional transporter

knockouts are needed to gain a better understanding of how

the regulation of extracellular glutamate contributes to seizures

and epilepsy.

Whether glutamate transporters are altered in human epilepsy

is controversial. Tessler et al. (1999) and Eid et al. (2004) found no

change in transporter expression in resected tissue from tempo-

ral lobe epilepsy patients. This stands in contrast to the work of

Mathern et al. (1999), who demonstrated regionally specific

changes in EAAT1-3 expression in the hippocampus in temporal

lobe epilepsy. Proper et al. (2002) examined transporter expres-

sion in sclerotic and nonsclerotic tissue and found that EAAT3,

a glutamate transporter with glial and neuronal distribution,

was increased in both groups. There are several possible expla-

nations for the different observations among researchers,

including differences in tissue processing between groups, in

disease severity, or epileptogenesis development. It is unknown

whether changes in transporters represent causative or com-

pensatory changes during epileptogenesis.

Functionally Linked Water and Potassium Homeostasis
Changes in ECS volume or extracellular potassium level power-

fully regulate the excitability of brain tissue. As with any closed
system, when neuronal and/or glial cells of the CNS swell, extra-

cellular space inevitably shrinks. A reduction in ECS volume pro-

duces hyperexcitability and enhanced epileptiform activity (Du-

dek et al., 1990). Increasing ECS volume, on the other hand,

has the opposite effect, attenuating hyperexcitability in hippo-

campal slices exposed to high physiological levels of extracellu-

lar potassium or zero-calcium bathing medium (Traynelis and

Dingledine, 1989; Dudek et al., 1990). Moreover, electrolyte im-

balances are often associated with seizures. This is especially

true in hypo-osmolar situations such as hyponatremia (Saly

and Andrew, 1993) or overhydration, which causes a rapid

drop in extracellular osmolarity (Manley et al., 2004). We focus

attention here on the fact that glial volume largely regulates the

size of the ECS (Sykova, 2005) and thereby controls both the

concentration and diffusion rate of extracellular transmitters

and ions as well as the strength of ephaptic (electric field) com-

munication among neurons. Decreasing ECS volume magnifies

the effects of transient changes in extracellular ion and/or trans-

mitter concentrations. When the ECS volume shrinks, ephaptic

interactions among tightly packed neurons would increase due

to an increase in the ohmic resistance of the ECS. Release of

transmitters from astrocytes via volume-sensitive anion chan-

nels could also increase as these cells swell.

Aquaporin 4 and Kir4.1
The underlying mechanisms by which changes in ECS osmolar-

ity affect brain excitability were not obvious from initial studies.

Most cells, including glia, have effective regulatory mechanisms

to move ions and water between extracellular and cytoplasmic

compartments (Olson and Kimelberg, 1995; Holthoff and Witte,

1996). Recent attention has pointed to aquaporins and certain

potassium channels as key mediators of ECS volume. The aqua-

porins are a family of at least 11 integral membrane proteins in

mammals that mediate constitutive and regulated transport of

water across cellular membranes in many organs, including the

brain (Amiry-Moghaddam and Ottersen, 2003). In the brain, the

water channel aquaporin 4 (AQP4) is predominantly, if not exclu-

sively, expressed in glia (Nielsen et al., 1997). AQP4 protein in as-

trocytes faces the neuropil but is especially concentrated at peri-

vascular endfeet (Nielsen et al., 1997; Nagelhus et al., 2004)

(Figure 2, left). This localization pattern makes AQP4 well suited

to mediate the bidirectional flow of water between brain extracel-

lular space and blood and consequently to regulate the osmolar-

ity of the interstitial fluid surrounding neurons in the brain. In-

deed, mice lacking AQP4 have decreased levels of brain water

following water intoxication and focal cerebral ischemia (Manley

et al., 2000) and impaired clearance of water in models of vaso-

genic edema (Papadopoulos et al., 2004). These observations

demonstrate an important role for AQP4 in brain water transport

under pathological conditions. However, other than sensorineu-

ral deafness, AQP4 knockout mice have no obvious CNS abnor-

malities under normal conditions (Manley et al., 2004).

The inwardly rectifying K+ channel, Kir4.1, is abundantly ex-

pressed in cortical astrocytes, where it directly or indirectly helps

set a very negative resting potential (Kucheryavykh et al., 2007;

Djukic et al., 2007). In the brain, Kir4.1 protein and transcripts

are found in �50% of astrocytes (Higashi et al., 2001; Schroder

et al., 2002). Like AQP4, Kir4.1 is also polarized in brain
Neuron 58, April 24, 2008 ª2008 Elsevier Inc. 171
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astrocytes, being concentrated at astrocytic endfeet near the

perivascular space (Higashi et al., 2001) and subpial surface

on one end and neuropil on the other (Figure 2, left). Several key

observations support the hypothesis that AQP4 and Kir4.1 work

together to regulate potassium and water levels in the ECS.

First, AQP4 and Kir4.1 coimmunoprecipitate and colocalize to

the same subcellular regions (Nagelhus et al., 2004). Second,

AQP4 null mice have slower K+ clearance but no difference in

peak extracellular potassium concentration following electrical

stimulation of the cortex (Binder et al., 2006). Correspondingly,

these animals also showed a significant increase in the duration

of stimulus-evoked seizures. These data support the hypothesis

that AQP4 and Kir4.1 cooperate in the clearance of K+ and water

after neural activity. Because Kir4.1 faces capillaries and [K+]o is

higher in blood than CSF, Kir4.1 might function to import K+ from

the blood into the brain’s astrocyte syncytium. In this view, the

density of AQP4 and Kir4.1 channels on perivascular endfeet

and the rate of potassium import into the brain from blood would

be primary determinants of the ECS. Furthermore, blood vessel

endothelial cells are not very permeable to potassium, which

helps protect the brain. Unlike vitreous fluid in the eye (Newman

et al., 1984), blood is probably not a major sink for distributing ex-

cess potassium in the brain. Potassium clearance in hippocam-

pal CA1 is delayed in slices from AQP4-deficient mice (Amiry-

Moghaddam et al., 2003), which reinforces the idea that water

flux through glial endfeet is necessary for efficient potassium

Figure 2. Hypothesis for Role of Astrocytes in Water Balance
Dysfunction in Epilepsy
The left panel depicts a typical bipolar brain astrocyte with processes in the
neuropil (bottom) and endfeet near the perivascular space (top). The distribu-
tion of aquaporin 4 water channels (red) and Kir4.1 potassium channels (blue)
is shown. Following neuronal activity, the potassium taken up into astrocytes
via Kir4.1 is accompanied by water entry through AQP4 to maintain osmotic
balance. Excess water may be dumped into the perivascular space by
AQP4. In the epileptic state (right panel), there is a partial redistribution of
AQP4 away from perivascular endfeet to the neuropil. The predicted conse-
quences of this redistribution include enhanced entry of water into the neuropil
but impaired egress of water into perivascular space, leading to astrocytic
swelling and reduced interstitial space volume and thus enhanced ephaptic
interactions among neurons.
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buffering. For these reasons, a primary function of Kir4.1 may

be to act in concert with AQP4 to regulate ECS volume.

Although it has been known for quite some time that neuronal

excitability is sensitive to both osmolarity and the size of the ex-

tracellular space, emerging insights into the molecular mecha-

nisms by which extracellular volume is controlled by astrocytes

give rise to an intriguing and novel hypothesis for the devel-

opment of hyperexcitability after status epilepticus or traumatic

brain injury (Figure 2). During normal periods of activity, much

of the potassium released into the ECS by spiking neurons is

taken up by astrocytes and neurons. The notion is that normally

potassium uptake is accompanied by water influx via AQP4 into

astrocytes in the perisynaptic space and then excess water is

dumped via AQP4 at perivascular endfeet. By this means, focal

glial swelling and thus ECS shrinkage during hyperactivity could

normally be minimized. During seizures, there is focal swelling in

the area of the seizure focus (Traynelis and Dingledine, 1989;

Hattori et al., 2003; Binder et al., 2006). In sclerotic human hippo-

campi, AQP4 is redistributed from perivascular to perisynaptic

space (Eid et al., 2005), with an overall increase in AQP4 expres-

sion (Lee et al., 2004). The effect of this redistribution would plau-

sibly be to both enhance water entry near synapses and slow

water egress distantly (Figure 2, right), leading to local astrocyte

swelling with accompanying restriction in neuropil ECS.

Gap Junctions

Gap junctions consist of aggregates of connexin proteins that

form functional channels between adjacent cells (Unger et al.,

1999). Astrocytic processes are coupled through gap junctions

to form large intercellular networks, which allows astrocytes to

disperse small molecules such as K+ or glutamate and therefore

prevent their extracellular accumulation during neuronal firing.

However, a recent study weighs against the old notion that K+

buffering is primarily mediated by redistribution of K+ through

gap junctions in the glial syncytium (Wallraff et al., 2006). Con-

nexins 30 and 43 are required structural proteins of astrocyte

gap junctions (Nagy et al., 2004). Comparison of wild-type

mice with connexin-43 and connexin-30 double knockouts

shows that under most conditions the absence of gap junctions

had little effect on the spatial decay of K+ in the CA1 stratum ra-

diatum following antidromic spikes; only maximal stimulation led

to increased extracellular K+ levels in knockout compared to

wild-type mice. These results strongly suggest that gap junc-

tions in the glia syncytium play a negligible role in the spatial

redistribution of potassium. However, hippocampal slices from

mice lacking gap-junction-coupled astrocytes exhibited sponta-

neous interictal bursts in area CA1 (Wallraff et al., 2006), which

suggests that the loss of gap-junction-connected astrocytes

does indeed result in neuronal hyperexcitability. Whether hyper-

excitability is due to the inability to redistribute K+ through gap

junctions remains to be seen. It is not known whether other prop-

erties of glial cells are changed by knockout of the gap junction

proteins and what effects this might have on neuronal-astrocyte

signaling and neurotransmission.

Do Reactive Astrocytes Oppose or Exacerbate
Seizure Activity?
Almost all insults to the brain, including prolonged seizures,

result in reactive gliosis, which is characterized by severe
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morphological and biochemical changes of pre-existing astro-

cytes (Binder and Steinhäuser, 2006; Ravizza et al., 2008) as

well as the generation of new astrocytes from stem cells (Borges

et al., 2006). There are no reports of the global impact of selec-

tively preventing reactive gliosis in epilepsy, but studies of ische-

mic or traumatic brain injury could be relevant. For example,

Myer et al. (2006) used a conditional transgenic mouse in which

reactive, proliferating astrocytes were ablated by gangciclovir;

they measured neurodegeneration after moderate or severe

controlled cortical impact as a model of traumatic brain injury

(TBI). The ablation of reactive astrocytes carried out over the

week following moderate TBI markedly exacerbated neural

damage and increased leukocyte infiltration into the affected

cortical area. The consequence of gradually ablating proliferat-

ing astrocytes was similar after mild stab injury to the spinal

cord (Faulkner et al., 2004) or cortex (Bush et al., 1999). These

studies demonstrate a protective function of reactive astrocytes

during the week after mild injury, but do not address the acute

effects shortly after injury or the responsible mechanisms.

The entirety of changes that occur in astrocytes during epi-

lepsy, as well as the cellular and molecular processes responsi-

ble for astrogliosis, are still poorly understood. Astrocytes in the

region of brain inflammation undergo hypertrophy of cellular pro-

cesses, especially near the soma, which accentuates their stel-

late morphology and is associated with upregulation of the inter-

mediate filament proteins vimentin, nestin, and glial fibrillary

acidic protein. Many other proteins are upregulated in reactive

astrocytes, including mGluR3, mGluR5, mGluR8 (Aronica et al.,

2000; Tang et al., 2001; Tang and Lee, 2001; Notenboom

et al., 2006), the proinflammatory proteins COX2 and CXCR4

(Lee et al., 2007), nerve growth factor and its receptors (Sofro-

niew et al., 2001), estrogen receptor a (Tokuhara et al., 2005),

a variety of cytokines, including transforming growth factor b,

tumor necrosis factor a, interleukins 1, 4, 6, and 10, and enzymes

including iNOS and cathepsins D and G (Ridet et al., 1997; Lede-

boer et al., 2000; Hulshof et al., 2002). Glutamine synthase is

prominently downregulated in reactive astrocytes (Eid et al.,

2004). Do the functional changes in reactive astrocytes expected

from these expression changes modify seizure susceptibility?

Pro- and Anticonvulsant Roles of Cytokines

Released by Reactive Astrocytes

Astrocytes have dynamic functions and can produce many pro-

and anti-inflammatory molecules. The production of TNFa and

IL-1b by astrocytes can lead to beneficial or detrimental out-

comes depending on which receptors are activated and the

timing of expression (Wilde et al., 2000; Bernardino et al.,

2005; Vezzani and Granata, 2005). Work by Vezzani et al. (2000)

demonstrated that transgenic overexpression in astrocytes of IL-

1Ra, a natural antagonist of IL-1b, significantly delays the onset

and reduces the duration of generalized seizures in mice chal-

lenged with bicuculline; these effects of IL-1Ra were absent in

the IL-1R1 knockout mouse, implying that activation of IL-1R1

by IL-1b can reduce seizure threshold. Seizures rapidly induce

production of both IL-1b and IL-1Ra in astrocytes (De Simoni

et al., 2000). These findings together point to an important role

of astrocytic IL-1b in regulating seizure susceptibility. Like-

wise, the cytokines IL-10, IL-4, and transforming growth factor

b, which are all produced by astrocytes after various insults
(Ledeboer et al., 2000; Rasley et al., 2006), reduce expression

of the proinflammatory cytokines IL-1b, IL-6, and tumor necrosis

factor a (TNFa), as well as nitric oxide (Ledeboer et al., 2000).

TNFa, a pleiotropic cytokine produced by both astrocytes and

activated microglia, is implicated in diverse biological events

from inflammation to proliferation depending on the cell target,

exposure duration, and receptor activated. TNFa appears to

cause cell damage through activation of TNFR1, which contains

an intracellular ‘‘death domain.’’ Activation of TNFR2, on the

other hand, reduces the intensity of acute kainate-evoked sei-

zures (Balosso et al., 2005), suggesting that the balance between

activation of TNFR1 and TNFR2 will determine whether the net

effect of TNFa release is pro- or anticonvulsant. TNFa also

appears to promote neuronal excitability, as described next.

Potentiation of Astrocytic Glutamate Signaling

in Reactive Astrocytes

There is no question that astrocytes can release glutamate and

that under certain pathological conditions (e.g., Fiacco et al.,

2007) this phenomenon is more noticeable. Curiously, 20–40 s

of continuous astrocyte stimulation appears to be necessary to

increase spontaneous mEPSC frequency in granule cells, even

though the astrocytic Ca2+ signal peaks in 10 s or less (Jourdain

et al., 2007). A similarly long latency between astrocyte Ca2+ sig-

nals and CA1 pyramidal cell SICs has typically been reported

(Angulo et al., 2004; Fellin et al., 2004; Tian et al., 2005), suggest-

ing that a series of steps after Ca2+ elevation may intervene be-

fore productive glutamate release. What could these intervening

steps be? Clues can be drawn from studies of glutamate release

from cultured astrocytes.

Studies by Bezzi and colleagues (Bezzi et al., 1998, 2001)

identified TNFa as a prominent glutamate release modulator in

cultured astrocytes. TNFa released into the medium by reactive

astrocytes and activated microglia activates astrocytic TNFR1

receptors, which leads to production of a prostaglandin; the

formed prostaglandin in turn strongly increases glutamate re-

lease from astrocytes in response to activation of Gq-coupled

GPCRs in astrocytes. A similar situation obtains for synergy be-

tween TNFR1 activation and activation by released ATP of Gq-

coupled P2Y1 receptors on astrocytes (Domercq et al., 2006).

In this study, it was further shown that glutamate release evoked

by P2Y1 receptor activation was largely suppressed in astro-

cytes isolated from TNFR1 null mice or in astrocytes treated

with cyclooxygenase inhibitors or the Ca2+ chelator BAPTA-

AM. TNFa release was preserved in each of the above conditions

but could, however, be reduced by inhibitors of ERK-type MAP

kinase, suggesting that this MAP kinase pathway is upstream

of TNFa release. These findings together cement the roles of

TNFa and a prostanoid (possibly PGE2 or PGD2) as key boosters

of astrocytic glutamate release. The induction of mGluR5 in reac-

tive astrocytes could synergize with this amplification system.

The overall picture is that reactive astrocytes or activated micro-

glia, via release of TNFa and subsequently PGE2, amplify astro-

cytic glutamate release in response to astrocytic Gq-coupled

GPCR activation. This ‘‘two-hit’’ hypothesis (Figure 3) for priming

of astrocytic glutamate release by activated microglia and reac-

tive astrocytes presents a sinister feature of sclerotic brain tissue

that could, by enhancing SIC frequency, depolarize neurons in

the affected regions and thus promote seizure initiation.
Neuron 58, April 24, 2008 ª2008 Elsevier Inc. 173
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Glutamine Synthetase Downregulation in Sclerotic

Brain Could Promote Seizures

Sclerotic brain tissue removed during epilepsy surgery is charac-

terized by downregulation of glutamine synthetase in astrocytes

(Eid et al., 2004). In the brain, glutamine synthetase is expressed

nearly exclusively by astrocytes and oligodendroglia (Martinez-

Hernandez et al., 1977). Following its synaptic release from the

terminals of glutamatergic neurons, glutamate is transported

into astrocytes where it is converted by glutamine synthetase

into glutamine; glutamine in turn is exported and taken up by

neurons, where it is converted back to glutamate by mitochon-

drial glutaminase. This glutamine cycle normally serves as a ma-

jor mechanism for ammonia detoxification in the brain and also

as a buffered reservoir of a precursor (glutamine) for glutamate

and GABA synthesis (Hassel and Dingledine, 2006). Systemic

administration of a glutamine synthetase inhibitor causes severe

seizures in laboratory animals (Folbergrova et al., 1969; Szeg-

edy, 1978), which supports the idea that impaired glutamate to

glutamine cycling could contribute to seizures in the epileptic

brain. Indeed, glutamine-glutamate cycling appears to be

slowed in sclerotic human hippocampus removed during epi-

lepsy surgery (Petroff et al., 2002).

There are several potential mechanisms by which reduced

glutamine synthetase could promote seizures. First, downregu-

lation of glutamine synthetase could result in the accumulation

of glutamate in astrocytes and thus its buildup in the extracellular

space, because rapid metabolism of intracellular glutamate ap-

pears to be needed for glutamate uptake into astrocytes (Otis

and Jahr, 1998). Second, because vesicular GABA levels are in

equilibrium with intraterminal glutamate concentration, which in

turn is partially dependent upon glutamine transport into inhibi-

tory neurons, downregulation of glutamine synthetase could par-

tially deplete inhibitory synaptic terminals of GABA and thus im-

pair GABAergic inhibition. Evidence for this notion was recently

Figure 3. Hypothesis for Enhanced Ability of Reactive Astrocytes to
Release Glutamate
(Left) Scheme for control of astrocytic glutamate release by two G protein-cou-
pled receptors. (Right) In the epileptic brain, mGluR5 is upregulated, and acti-
vated microglia as well as reactive astrocytes release TNFa, which acts on
TNFR1 receptors in a pathway that promotes prostaglandin formation. Prosta-
glandin in turn activates a Gq-coupled prostanoid receptor that boosts intra-
astrocyte Ca2+ release and thus astrocytic glutamate release. Hypothesis
adapted from work reported by Bezzi et al. (1998, 2001) and Domercq et al.
(2006).
174 Neuron 58, April 24, 2008 ª2008 Elsevier Inc.
provided by Liang et al. (2006), who showed that inhibition of glu-

tamine synthesis by methionine sulfoximine reduced the ampli-

tude of IPSCs in CA1 pyramidal neurons during repetitive stimu-

lus trains, an effect that was traced to reduced quantal content

rather than lower release probability. Importantly, the effect of

the inhibitor could be overcome by replacing the lost glutamine

with bath perfusion. A similar effect of methionine sulfoximine

was not seen on evoked EPSCs (Kam and Nicoll, 2007), although

in this study the synapses were not subjected to stimulus trains.

Moving forward, it will be important to determine whether synap-

tic inhibition is reduced in the vicinity of reactive astrocytes and

whether reversal of this effect occurs when GS is selectively

reintroduced into reactive astrocytes.

Impaired Water and Potassium Balance
in Reactive Astrocytes
Comparison of hippocampal slices obtained from patients with

or without mesial temporal sclerosis shows that K+ buffering is

impaired in sclerotic tissue (Heinemann et al., 2000). In the pilo-

carpine epilepsy model, the ability of Ba2+ (a blocker of all known

Kir) to increase baseline [K+]o was dramatically lower (Gabriel

et al., 1998), which suggests that Kir currents in astrocytes are

reduced several days after status epilepticus. This fits well with

a patch-clamp study that provided direct evidence for smaller

Kir currents in astrocytes from epileptic hippocampus (Schroder

et al., 1999; Hinterkeuser et al., 2000). Together, these data as-

sociate impaired K+ buffering with reduced expression of func-

tional Kir in the sclerotic condition but do not demonstrate that

Kir themselves are the major K+ clearance route. Impaired astro-

cytic K+ buffering would be expected to result in slower K+ clear-

ance, which in turn could lower seizure threshold and thereby

contribute to seizure generation. The prediction is that in epilep-

tic tissue redistribution of glial AQP4 away from perivascular

membranes perturbs water flux and thus impairs K+ buffering.

Under these conditions, a normally unremarkable level of neuro-

nal activity could exacerbate glial swelling and thus ECS shrink-

age, which would increase the likelihood of seizures. Whereas

the data are consistent with the idea that AQP4 and Kir4.1 partic-

ipate in clearance of K+, additional studies are required to clarify

the expression and regulation of both AQP4 and Kir4.1 in the hip-

pocampus and their changes during epileptogenesis. In sum, an

impaired ability of reactive glia to redistribute water and thereby

maintain osmotic balance throughout brain microdomains could

contribute to the hyperexcitable epileptic state.

Summary and Open Issues
Astrocytes in the healthy brain mediate glutamate reuptake, reg-

ulate the ionic environment and interstitial volume, and serve as

a component of the neurovascular unit that controls blood-brain

barrier permeability (Abbott et al., 2006). Although reactive astro-

cytes in the epileptic focus are well known to undergo extensive

morphological and physiological changes that modify these

three overarching functions, the implications for epilepsy are

just emerging. Moreover, we have only a primitive understanding

of astrocyte heterogeneity and its consequences.

In models of ischemic or traumatic brain injury, conditional ab-

lation of proliferating astrocytes increases neuronal injury and in-

creases infiltration of the damaged region by leukocytes, which
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strongly point to a protective function of proliferating astrocytes

in these two conditions. However, not all reactive astrocytes

have undergone recent cell division. Additionally, environmental

cues for astrocytes in the epileptic brain could well differ from

those in the ischemic brain, so generalizing results from ischemia

to epilepsy may not be prudent. At least two lines of evidence

suggest that reactive astrocytes might contribute to the hyperex-

citable condition. First, the redistribution of AQP4 in the epileptic

state, away from perivascular membranes toward neuropil,

should create a situation allowing rapid astrocytic swelling in

neuropil with consequent shrinkage in ECS and enhanced

ephaptic interactions among tightly packed neurons (Figure 2).

Second, neuroinflammatory signaling pathways engaged in re-

active glia in epileptic foci may allow astrocytic glutamate signal-

ing to become prominent enough to contribute to the hyperexcit-

able state (Figure 3). Although reactive astrocytes develop both

pro- and antiepileptic properties, the preponderance of current

evidence favors the former. Going forward, it would be valuable

to determine whether ablation of proliferating astrocytes in

status epilepticus models of epilepsy exacerbates or blunts neu-

rodegeneration, changes in synaptic plasticity, leucocyte infiltra-

tion, cognitive impairment, and other features of the latent period

that precede the appearance of spontaneous seizures.

Over the past few years, the consequences of Ca2+ signaling in

astrocytes have received considerable attention. Astrocytes,

particularly in pathological situations involving neuroinflamma-

tion, may be important active members of many synapses, their

roles extending well beyond structural support or extracellular

ion scavengers. The existence of astrocytic glutamate release,

most convincingly demonstrated in tissue culture, is challenging

the old view of astrocytes as simple support structures. In a con-

text-dependent manner, release of glutamate from a single as-

trocyte can depolarize two to four adjacent neurons; such micro-

synchrony undoubtedly elevates excitability of the involved

circuits. Determining whether interictal bursts can be triggered

in the epileptic brain by microsynchronous depolarizations will

require devising ways to isolate the consequences of astrocytic

glutamate release with normal synaptic transmission intact.

The act of preparing hippocampal brain slices necessarily in-

jures the tissue and might therefore cause a variable degree of

reactive astrogliosis. Given the clear demonstration that TNFa,

which is prominently secreted from reactive astrocytes and acti-

vated microglia, can increase astrocytic glutamate release sub-

stantially (Bezzi et al., 2001; Domercq et al., 2006), the possibility

that astrogliosis is essential for SICs and other manifestations of

gliotransmission must be considered. This possibility can be

explored simply by determining whether inhibitors of cyclooxy-

genase or TNFR1 prevent these phenomena in brain slices.

Insights gleaned from careful studies of the properties of reac-

tive astrocytes suggest several novel targets for drug develop-

ment, including allosteric potentiators of glutamine synthetase,

regulators of AQP4 trafficking, interleukin 1 antagonists, and

agonists or allosteric potentiators of TNFR2. Unraveling the

specific pathologic and protective pathways in reactive astro-

cytes has begun, and much work remains, but today it is clear

that astrocytes play prominent roles in information proces-

sing in the epileptic brain. These are, indeed, not your father’s

astrocytes.
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Abbott, N.J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte-endothelial
interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53.

Abdullaev, I.F., Rudkouskaya, A., Schools, G.P., Kimelberg, H.K., and Mongin,
A.A. (2006). Pharmacological comparison of swelling-activated excitatory
amino acid release and Cl- currents in cultured rat astrocytes. J. Physiol.
572, 677–689.

Amiry-Moghaddam, M., and Ottersen, O.P. (2003). The molecular basis of
water transport in the brain. Nat. Rev. Neurosci. 4, 991–1001.

Amiry-Moghaddam, M., Williamson, A., Palomba, M., Eid, T., de Lanerolle,
N.C., Nagelhus, E.A., Adams, M.E., Froehner, S.C., Agre, P., and Ottersen,
O.P. (2003). Delayed K+ clearance associated with aquaporin-4 mislocaliza-
tion, phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl.
Acad. Sci. USA 100, 13615–13620.

Anderson, C.M., and Swanson, R.A. (2000). Astrocyte glutamate transport,
review of properties, regulation, physiological functions. Glia 32, 1–14.

Angulo, M.C., Kozlov, A.S., Charpak, S., and Audinat, E. (2004). Glutamate
released from glial cells synchronizes neuronal activity in the hippocampus.
J. Neurosci. 24, 6920–6927.

Araque, A., Li, N., Doyle, R.T., and Haydon, P.G. (2000). SNARE protein-de-
pendent glutamate release from astrocytes. J. Neurosci. 20, 666–673.

Aronica, E., van Vliet, E.A., Mayboroda, O.A., Troost, D., da Silva, F.H., and
Gorter, J.A. (2000). Upregulation of metabotropic glutamate receptor subtype
mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal
lobe epilepsy. Eur. J. Neurosci. 12, 2333–2344.

Balosso, S., Ravizza, T., Perego, C., Peschon, J., Campbell, I.L., De Simoni,
M.G., and Vezzani, A. (2005). Tumor necrosis factor-alpha inhibits seizures
in mice via p75 receptors. Ann. Neurol. 57, 804–812.

Bernardino, L., Xapelli, S., Silva, A.P., Jakobsen, B., Poulsen, F.R., Oliveira,
C.R., Vezzani, A., Malva, J.O., and Zimmer, J. (2005). Modulator effects of in-
terleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotox-
icity in mouse organotypic hippocampal slice cultures. J. Neurosci. 25, 6734–
6744.

Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan,
T., and Volterra, A. (1998). Prostaglandins stimulate calcium-dependent gluta-
mate release in astrocytes. Nature 391, 281–285.

Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Ves-
covi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001). CXCR4-
activated astrocyte glutamate release via TNFalpha, amplification by microglia
triggers neurotoxicity. Nat. Neurosci. 4, 702–710.

Bezzi, P., Gundersen, V., Galbete, J.L., Seifert, G., Steinhauser, C., Pilati, E.,
and Volterra, A. (2004). Astrocytes contain a vesicular compartment that is
competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620.

Binder, D.K., and Steinhäuser, C. (2006). Functional changes in astroglial cells
in epilepsy. Glia 54, 358–368.

Binder, D.K., Yao, X., Zador, Z., Sick, T.J., Verkman, A.S., and Manley, G.T.
(2006). Increased seizure duration and slowed potassium kinetics in mice lack-
ing aquaporin-4 water channels. Glia 53, 631–636.

Bonifacino, J.S., and Glick, B.S. (2004). The mechanisms of vesicle budding
and fusion. Cell 116, 153–166.

Borges, K., McDermott, D., Irier, H., Smith, Y., and Dingledine, R. (2006).
Degeneration and proliferation of astrocytes in the mouse dentate gyrus after
pilocarpine-induced status epilepticus. Exp. Neurol. 201, 416–427.
Neuron 58, April 24, 2008 ª2008 Elsevier Inc. 175



Neuron

Review
Bowser, D.N., and Khakh, B.S. (2007). Two forms of single-vesicle astrocyte
exocytosis imaged with total internal reflection fluorescence microscopy.
Proc. Natl. Acad. Sci. USA 104, 4212–4217.

Bush, T.G., Puvanachandra, N., Horner, C.H., Polito, A., Ostenfeld, T., Svend-
sen, C.N., Mucke, L., Johnson, M.H., and Sofroniew, M.V. (1999). Leukocyte
infiltration, neuronal degeneration, and neurite outgrowth after ablation
of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23,
297–308.

Bushong, E.A., Martone, M.E., Jones, Y.Z., and Ellisman, M.H. (2002). Proto-
plasmic astrocytes in CA1 stratum radiatum occupy separate anatomical do-
mains. J. Neurosci. 22, 183–192.

Cavelier, P., and Attwell, D. (2005). Tonic release of glutamate by a DIDS-sen-
sitive mechanism in rat hippocampal slices. J. Physiol. 564, 397–410.

Christopherson, K.S., Ullian, E.M., Stokes, C.C., Mullowney, C.E., Hell, J.W.,
Agah, A., Lawler, J., Mosher, D.F., Bornstein, P., and Barres, B.A. (2005).
Thrombospondins are astrocyte-secreted proteins that promote CNS synap-
togenesis. Cell 120, 421–433.

De Simoni, M.G., Perego, C., Ravizza, T., Moneta, D., Conti, M., Marchesi, F.,
De Luigi, A., Garattini, S., and Vezzani, A. (2000). Inflammatory cytokines and
related genes are induced in the rat hippocampus by limbic status epilepticus.
Eur. J. Neurosci. 12, 2623–2633.

Dingledine, R., Hynes, M., and King, G.L. (1986). Involvement of N-methyl-
D-aspartate receptors in epileptiform bursting in the rat hippocampal slice.
J. Physiol. 380, 175–189.

Djukic, B., Casper, K.B., Philpot, B.D., Chin, L.S., and McCarthy, K.D. (2007).
Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibi-
tion of potassium and glutamate uptake, and enhanced short-term synaptic
potentiation. J. Neurosci. 27, 11354–11365.

Domercq, M., Brambilla, L., Pilati, E., Marchaland, J., Volterra, A., and Bezzi, P.
(2006). P2Y1 receptor-evoked glutamate exocytosis from astrocytes, control
by tumor necrosis factor-alpha and prostaglandins. J. Biol. Chem. 281,
30684–30696.

Dudek, F.E., Obenaus, A., and Tasker, J.G. (1990). Osmolality-induced
changes in extracellular volume alter epileptiform bursts independent of chem-
ical synapses in the rat, importance of non-synaptic mechanisms in hippocam-
pal epileptogenesis. Neurosci. Lett. 120, 267–270.

Edling, Y., Ingelman-Sundberg, M., and Simi, A. (2007). Glutamate activates
c-fos in glial cells via a novel mechanism involving the glutamate receptor sub-
type mGlu5 and the transcriptional repressor DREAM. Glia 55, 328–340.

Eid, T., Thomas, M.J., Spencer, D.D., Runden-Pran, E., Lai, J.C., Malthankar,
G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., and de Lanerolle, N.C. (2004).
Loss of glutamine synthetase in the human epileptogenic hippocampus,
possible mechanism for raised extracellular glutamate in mesial temporal
lobe epilepsy. Lancet 363, 28–37.

Eid, T., Lee, T.S., Thomas, M.J., Amiry-Moghaddam, M., Bjornsen, L.P., Spen-
cer, D.D., Agre, P., Ottersen, O.P., and de Lanerolle, N.C. (2005). Loss of
perivascular aquaporin 4 may underlie deficient water and K+ homeostasis
in the human epileptogenic hippocampus. Proc. Natl. Acad. Sci. USA 102,
1193–1198.

Fam, S.R., Gallagher, C.J., Kalia, L.V., and Salter, M.W. (2003). Differential fre-
quency dependence of P2Y1- and P2Y2- mediated Ca 2+ signaling in astro-
cytes. J. Neurosci. 23, 4437–4444.

Faulkner, J.R., Herrmann, J.E., Woo, M.J., Tansey, K.E., Doan, N.B., and So-
froniew, M.V. (2004). Reactive astrocytes protect tissue and preserve function
after spinal cord injury. J. Neurosci. 24, 2143–2155.

Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., and Carmignoto,
G. (2004). Neuronal synchrony mediated by astrocytic glutamate through
activation of extrasynaptic NMDA receptors. Neuron 43, 729–743.

Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., and Haydon, P.G.
(2006). Astrocytic glutamate is not necessary for the generation of epileptiform
neuronal activity in hippocampal slices. J. Neurosci. 26, 9312–9322.

Fiacco, T.A., and McCarthy, K.D. (2004). Intracellular astrocyte calcium waves
in situ increase the frequency of spontaneous AMPA receptor currents in CA1
pyramidal neurons. J. Neurosci. 24, 722–732.
176 Neuron 58, April 24, 2008 ª2008 Elsevier Inc.
Fiacco, T.A., Agulhon, C., Taves, S.R., Petravicz, J., Casper, K.B., Dong, X.,
Chen, J., and McCarthy, K.D. (2007). Selective stimulation of astrocyte calcium
in situ does not affect neuronal excitatory synaptic activity. Neuron 54,
611–626.

Folbergrova, J., Passonneau, J.V., Lowry, O.H., and Schulz, D.W. (1969). Gly-
cogen, ammonia and related metabolities in the brain during seizures evoked
by methionine sulphoximine. J. Neurochem. 16, 191–203.

Gabriel, S., Eilers, A., Kivi, A., Kovacs, R., Schulze, K., Lehmann, T.N., and Hei-
nemann, U. (1998). Effects of barium on stimulus induced changes in extracel-
lular potassium concentration in area CA1 of hippocampal slices from normal
and pilocarpine-treated epileptic rats. Neurosci. Lett. 242, 9–12.

Grillner, S., Markram, H., De Schutter, E., Silberberg, G., and LeBeau, F.E.
(2005). Microcircuits in action—from CPGs to neocortex. Trends Neurosci.
28, 525–533.

Halassa, M.M., Fellin, T., and Haydon, P.G. (2007). The tripartite synapse: roles
for gliotransmission in health and disease. Trends Mol. Med. 13, 54–63.

Han, S.K., Dong, X., Hwang, J.I., Zylka, M.J., Anderson, D.J., and Simon, M.I.
(2002). Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinc-
tively activated by RF-amide-related peptides through the Galpha q/11 path-
way. Proc. Natl. Acad. Sci. USA 99, 14740–14745.

Hassel, B., and Dingledine, R. (2006). Glutamate. In Basic Neurochemistry,
Seventh Edition, G.J. Siegel, R.W. Albers, S.T. Brady, and D.L. Price, eds.
(Burlington, MA: Elsevier), pp. 267–290.

Hattori, H., Matsuoka, O., Ishida, H., Hisatsune, S., and Yamano, T. (2003).
Magnetic resonance imaging in occipital lobe epilepsy with frequent seizures.
Pediatr. Neurol. 28, 216–218.

Haydon, P.G., and Carmignoto, G. (2006). Astrocyte control of synaptic trans-
mission and neurovascular coupling. Physiol. Rev. 86, 1009–1031.

Heinemann, U., Franceschetti, S., Hamon, B., Konnerth, A., and Yaari, Y.
(1985). Effects of anticonvulsants on spontaneous epileptiform activity which
develops in the absence of chemical synaptic transmission in hippocampal
slices. Brain Res. 325, 349–352.

Heinemann, U., Gabriel, S., Jauch, R., Schulze, K., Kivi, A., Eilers, A., Kovacs,
R., and Lehmann, T.N. (2000). Alterations of glial cell function in temporal lobe
epilepsy. Epilepsia 41 (Suppl 6), S185–S189.

Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T., and Kur-
achi, Y. (2001). An inwardly rectifying K(+) channel, Kir4.1, expressed in astro-
cytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell
Physiol. 281, C922–C931.

Hinterkeuser, S., Schroder, W., Hager, G., Seifert, G., Blumcke, I., Elger, C.E.,
Schramm, J., and Steinhauser, C. (2000). Astrocytes in the hippocampus of
patients with temporal lobe epilepsy display changes in potassium conduc-
tances. Eur. J. Neurosci. 12, 2087–2096.

Holthoff, K., and Witte, O.W. (1996). Intrinsic optical signals in rat neocortical
slices measured with near-infrared dark-field microscopy reveal changes in
extracellular space. J. Neurosci. 16, 2740–2749.

Hulshof, S., Montagne, L., De Groot, C.J., and Van Der Valk, P. (2002). Cellular
localization and expression patterns of interleukin-10, interleukin-4, and their
receptors in multiple sclerosis lesions. Glia 38, 24–35.

Jeftinija, S.D., Jeftinija, K.V., and Stefanovic, G. (1997). Cultured astrocytes ex-
press proteins involved in vesicular glutamate release. Brain Res. 750, 41–47.

Jourdain, P., Bergersen, L.H., Bhaukaurally, K., Bezzi, P., Santello, M., Do-
mercq, M., Matute, C., Tonello, F., Gundersen, V., and Volterra, A. (2007). Glu-
tamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci.
10, 331–339.

Kam, K., and Nicoll, R. (2007). Excitatory synaptic transmission persists inde-
pendently of the glutamate-glutamine cycle. J. Neurosci. 27, 9192–9200.

Kofuji, P., and Newman, E.A. (2004). Potassium buffering in the central nervous
system. Neuroscience 129, 1045–1056.

Korn, S.J., Giacchino, J.L., Chamberlin, N.L., and Dingledine, R. (1987). Epi-
leptiform burst activity induced by potassium in the hippocampus and its
regulation by GABA-mediated inhibition. J. Neurophysiol. 57, 325–340.



Neuron

Review
Kucheryavykh, Y.V., Kucheryavykh, L.Y., Nichols, C.G., Maldonado, H.M.,
Baksi, K., Reichenbach, A., Skatchkov, S.N., and Eaton, M.J. (2007). Downre-
gulation of Kir4.1 inward rectifying potassium channel subunits by RNAi im-
pairs potassium transfer and glutamate uptake by cultured cortical astrocytes.
Glia 55, 274–281.
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